
R E S E A RCH ART I C L E

The Relationship Between Two Methods for
Estimating Uncertainties in Data Assimilation

Ricardo Todling1 | Noureddine Semane2 | Richard
Anthes3 | Sean Healy2

1NASA Global Modeling and Assimilation
Office, Greenbelt MD, USA
2European Centre for Medium-Range
Weather Forecasts, Reading, United
Kingdom
3COSMIC Program Office, University
Corporation for Atmospheric Research,
Boulder, Colorado, USA
Correspondence
Ricardo Todling, NASA Global Modeling and
Assimilation Office, Code 610.1, Greenbelt
MD, 20771, USA
Email: ricardo.todling@nasa.gov
Funding information
Todling: NASA GMAO Core Funding;
Semane: Radio Occultation Meteorology
Satellite Application Facility (ROM SAF;
EUMETSAT); Anthes: NSF Grant
AGS-2054356 and NOAA Contract
16CN0070

This note examines the relationship between two appar-
ently unrelated methods for estimating error statistics or
uncertainties of relevance to data assimilation. The first
method is due to (Desroziers et al., 2005, Q. J. R. Meteo-
rol. Soc., 131, 3385–3396; referred to as DBCP hereafter)
and relies on residual statistics readily available from data
assimilation applications. The second method, the three-
cornered hat (3CH) developed byGray andAllan (1974, IEEE
28th Annual Symp. Freq. Control, 243–246), only recently
applied to atmospheric sciences, uses three data sets and
can derive estimates of relevant error uncertainties as well.
The usefulness of both methods lies in them not requiring
knowledge of the true value of the quantities at play. DBCP
derives its results by relying explicitly on the constraints as-
sociated with the data assimilation minimization problem;
3CH is general and its estimates hold as long as errors in
the three data sets of choice are uncorrelated. Establish-
ing the relationship between themethods requires applying
the 3CH approach to the same observation, background,
and analysis data sets used by DBCP. In this case, the same
assumptions of DBCP on residual errors allow for cancella-
tion of error cross–covariance terms in 3CH such that two
of its corners derive identical estimates for observation and
background error covariances as those of DBCP. The er-
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ror cross–covariance terms associatedwith the third corner
are shown to add up to twice the analysis error covariance
so that the 3CH estimate for the third corner recovers the
negative of the analysis error covariance. Illustrations of
these findings are provided by deriving uncertainties for ra-
dio occultation bending angles.
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1 | BRIEF BACKGROUND1

Two methods for estimating error (co)variance that seem unrelated, and based on very different assumptions, are2

shown here to be very closely related and reproduce each others results in a special case. The methods in question are3

that introduced by Desroziers et al. (2005, DBCP hereafter), which relies on two sequences of observation residuals4

produced in typical data assimilation methods, and the three-cornered hat (3CH) method introduced by Gray and5

Allan (1974), which is developed in a general statistical context and relies on availability of three data sets providing6

information about the observable of interest. Both methods avoid the need for knowing the true value of the quantity7

of interest. The realization that a precise statement about how the two methods compare came about during the8

review process of the work of Semane et al. (2022) showing a numerical comparison of estimates derived by these9

two methods for radio occultation (RO) bending angle observations.10

DBCP can be employed to derive estimates of observation, background and analysis error standard deviation11

(or variance) associated with given observables used in data assimilation (DA) applications. The method is frequently12

applied at NWP centers to check consistency and tune second order statistics required in corresponding DA systems.13

The particular case of estimating observation errors relies on constructing the following error covariance14

R̂DBCP = E
[
(o − a) (o − b)T

]
, (1)

from sample data. The variable o represents a p-vector of observations, b and a represent background and analysis15

fields projected onto the p–dimensional space of observations by a suitable observation operator – the notation16

here intentionally hides such operator. The symbol E [•] represents the expectation operator; the difference vectors17

in the parenthesis are the so–called residual vectors. The variance (and corresponding standard deviation) can be18

extracted from the diagonal of this expression, that is, Σ2
o = d i ag (R̂DBCP ) . Given that DBCP provide expressions for19

full covariance matrices, the method has also been used extensively to extract relevant observation error correlations20

(e.g., Stewart et al. 2014; Weston et al. 2014; Bormann et al. 2016; Waller et al. (2016, 2019)).21

The 3CH method chooses three data sets, {X,Y,Z}, providing estimates of the quantity of interest and gener-22
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ates an estimate of the error covariance in data set {X} as in23

X̂ =
1

2

{
E
[
(x − y) (x − y)T

]
+ E

[
(x − z) (x − z)T

]
−E

[
(y − z) (y − z)T

]
−
(
Bx y + Bxz − Bz y )}

+ [E (ϵx ⊙ ϵy ) + E (ϵx ⊙ ϵz ) − E (ϵz ⊙ ϵy ) ]

=
1

2
{cov (x − y) + cov (x − z) − cov (y − z) }

+ [E (ϵx ⊙ ϵy ) + E (ϵx ⊙ ϵz ) − E (ϵy ⊙ ϵz ) ] , (2)
where Bx y ≡ E (x − y)E (x − y)T , Bxz ≡ E (x − z)E (x − z)T , and By z ≡ E (y − z)E (y − z)T , with errors defined as,24

ϵx = x − E [x] − t, and analogously for ϵy and ϵz ; the last line in the first equality uses tensor notation to express25

u ⊙ v = 1/2(uvT + vuT ) , for two arbitrary p-dimensional vectors u and v. The second equality uses the more compact26

definition of a covariance matrix: cov (u, v) = E [ (u − E (u)) (v − E (v)) ]T = E (uvT ) − E (u)E (vT ) , with cov (u) =27

cov (u, u) .28

Practical applications of 3CH seek three data sets with independent errors, as to guarantee each of the cross–29

terms in (2) to be zero so they can be safely neglected. This can be accomplished by using independent observations,30

short–term model forecasts, or model data sets that do not assimilate the observations in the sample studied. As31

shown later in this note, it turns out that all that needs to happen is for there to be cancellation of the cross–covariance32

terms. The remaining terms in (2) are the only ones that can be calculated from sample data. The order of the data33

sets is arbitrary, which means that equivalent expressions for the error (co)variances Y and Z associated with data34

sets {Y,Z} can be obtained from (2) by rotating the variables x, y, and z. Anthes and Rieckh (2018) introduced the35

first application of the 3CH method to atmospheric data sets. When using 3CH to derive estimates of observation36

error statistics the remaining two corners are arbitrary and can be chosen at will. It is plausible to wonder how DBCP37

observation error uncertainty estimates compare with those of 3CH. This is the motivation for the numerical work of38

Semane et al. (2022) looking at RO bending angle observations.39

Given that analysis errors are dependent on observation and background errors, it seems puzzling to expect40

3CH to derive anything reasonable for observation uncertainties when its remaining two corners are formed by the41

background and analysis. From the start, 3CHwould seem to violate its requirement toworkwith data sets with uncor-42

related errors. Therefore, the work of Semane et al. (2022) showing reasonable agreement between estimates from43

two of the corners of 3CH with DBCP estimates of observation and background errors needs further understanding.44

Beyond that, one might wonder what the remaining corner of 3CH obtains and how it relate with DBCP’s estimate of45

analysis error. The present work finds that, under similar assumptions used to derive DBCP, two of the 3CH corners46

exactly recover DBCP error uncertainty estimates for the observations and backgrounds; while, surprisingly, its third47

corner recovers the negative of the error covariance associated with the analysis.48

This work does not aim to provide a comprehensive review of the literature on either of the methods investigated49

here. Sjoberg et al. (2021) give a review of 3CH, its history, intricacies and limitations, including its relationship with50

the triple-collocation method of Stoffelen (1998). Tandeo et al. (2020) give a review of what the authors refer to51

as “innovation–based methods”, but should more generally be referred to as “residual–based methods”, of which52

DBCP is one example. This work confines itself with simply establishing the relationship between these methods.53

In what follows, Section 2 establishes the full relationship between a particular choice of corners for 3CH with the54

optimal estimates from DBCP; an Appendix establishes the relationship in the general suboptimal case. Section 355

provides standard deviation estimates of RObending angle, revising similar results in Semane et al. (2022) in light of the56
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relationship established in this work; an additional illustration is provided by comparing observation error correlation57

estimates derived by the two methods for RO bending angle.58

2 | RELATIONSHIP BETWEEN DBCP AND 3CH59

2.1 | Equivalence of 3CH and DBCP when estimating R60

For simplicity, assume for now that no biases are at play. Subtracting the truth from the observation, analysis and61

background in a symmetrized form of (1) the DBCP estimate for the observation error covariance can be written as62

R̂ = E
[
(ϵo − ϵa ) ⊙ (ϵo − ϵb )

]
, (3)

and cross-multiplying the terms on the rhs of the expression above obtains63

R = R̂ + E
(
ϵo ⊙ ϵb

)
+ E (ϵa ⊙ ϵo ) − E

(
ϵa ⊙ ϵb

)
, (4)

where R = E (ϵoϵoT ) is the sought out observation error covariance matrix.64

Now R̂ can also be expressed in at least two alternative ways. First, by adding and subtracting a to the second65

term in parenthesis on the rhs of (1) it follows that66

R̂ = E { [o − a] ⊙ [o − a − (b − a) ] }

= E [ (o − a) ⊙ (o − a) ] − E [ (o − a) ⊙ (b − a) ] ,

(5)
and alternatively, by adding and subtracting b to the first term in parenthesis on the rhs of (1) it follows that67

R̂ = E { [ (o − b) − (a − b) ] ⊙ (o − b) }

= E [ (o − b) ⊙ (o − b) ] − E [ (a − b) ⊙ (o − b) ]

. (6)
Adding (5) and (6), and reordering the terms a little,68

R̂ =
1

2
{E [ (o − a) ⊙ (o − a) ] − E [ (o − a) ⊙ (b − a) ] +

E [ (o − b) ⊙ (o − b) ] + E [ (o − b) ⊙ (b − a) ] }

=
1

2
{E [ (o − a) ⊙ (o − a) ] − E [ (a − b) ⊙ (a − b) ] + E [ (o − b) ⊙ (o − b) ] } .

Substituting this result in (4) leads to69

R =
1

2
{cov (o − b) + cov (o − a) − cov (a − b) }

+
[
E
(
ϵo ⊙ ϵb

)
+ E (ϵa ⊙ ϵo ) − E

(
ϵa ⊙ ϵb

)]
.

(7)
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Let us now identify the three data sets, {X,Y,Z}, associated with 3CH to be the observation, background and70

analysis, {O, B,A}, i.e., take o = x, b = y, and a = z. With these, (7) derives (2), i.e., the DBCP result for R is identical71

to that of 3CH. However, once 3CH neglects the cross terms in (7), it would seem to no longer agree with DBCP. We72

will arrive at a full understanding of why 3CH still recovers DBCP even when these terms are neglected. Before that,73

we provide a brief recap of DBCP.74

2.2 | Brief recap of DBCP: the optimal case75

The result above derives the 3CH estimate for the observation error uncertainty from DBCP’s. Alternatively, one can76

start from the 3CH general result for its three corners, apply the assumptions of DBCP, and see what derives. For77

that, it helps recapitulate the assumptions of DBCP. Although the point of the DBCP diagnostic is to inform on the78

statistics of errors in the general suboptimal case, in this section, for simplicity, we take DBCP’s results in its optimal79

form. The general suboptimal case is treated in Appendix A.80

We start by saying a word about the notation adopted in this article. Dimensions that typically refer to state–81

space are thought of as projections to observation space using a suitable observation operator, H. With that, the82

vectors of background and analysis b and a, appearing in expressions such as (1), and their corresponding errors, ϵb83

and ϵa , are collapsed versions of what would normally be written as Hxb , Hxa , Heb and Hea , with xb , xa , eb and ea84

being the full state-space background and analysis, and their respective errors. Similarly, B is the notation for what85

normally would be written as HBHT , and analogously for A. The case of a matrix like the Kalman gain, whose only86

first dimension refers to the state–space, the notation implies that the H operator should appear on the left side of87

the original matrix, that is, K in this case stands for what would typically appear as HK. Implicit in the notation is the88

assumption of linearity of the observation operator.89

The assumptions required for DBCP are as follows:90

Assumption-1: That observation and background errors be uncorrelated: E (ϵoϵbT ) = 0.91

Assumption-2: That analysis errors be linearly related with observation and background errors:92

ϵa = ϵb + K(ϵo − ϵb ) . (8)
This last assumption is associated with the linearity of the observation operator mentioned above. To simplify the93

derivation of the relationship between 3CH and DBCP that follows, we take the trivial case when DBCP has the94

weighting matrix K set to be the Kalman gain, of optimal filtering theory,95

K = B(B + R)−1 , (9)
where B = E (ϵbϵbT ) is the observation space projection of the background error covariance in the compact notation.96

We emphasize this choice is made here for convenience; DBCP is all about the suboptimality of the weighing matrix.97

It is also useful to point out that (8) and (9) imply that the analysis error is orthogonal to the innovation vector, o − b,98

that is, E [ϵa (ϵo − ϵb )T ] = 0; this result will be explicitly used later — it is the basis of linear estimation (Kalman 1960;99

see also Lewis et al. 2006, Chap. 6).100

Remark 1: DBCP and bias. The theoretical derivation of DBCP assumes the observation residuals of the underlying101

DA system to be unbiased. In practice observation residuals are never fully unbiased, and construction of the cross–102
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covariance (1) is done by subtracting the residual biases. In this sense it is proper to write DBCP as103

R̂u ≡ cov (o − a, o − b) . (10)

Remark 2: DBCP as a covariance estimator. In actuality (10) represents a cross–covariance while it attempts to esti-104

mate a covariance. The two requirements for a matrix to be a covariance are symmetry and positive semi–definiteness.105

The first can be satisfied by introducing a symmetric version of DBCP,106

R̂ ≡ 1

2
(R̂u + R̂Tu ) . (11)

This is not unnatural, and practical use of DBCP that attempts to estimate correlations typically employs symmetriza-107

tion (e.g.,Gauthier et al. 2018, Waller et al. 2019, Aabaribaoune et al. 2021, Cheng and Qiu 2021). The second require-108

ment of positive semi–definiteness must be observed carefully when constructing covariances from finite samples.109

When it comes to using sample covariances in the algorithms of DA there is need for carefully ensuring positive–110

definiteness and avoiding poorly–conditioned matrices. A number of works have considered these matters in detail111

(viz., Weston et al. 2014; Geer 2019; Tabeart et al. 2020a,b). Symmetry is not an issue in 3CH. When it comes to112

positive semi–definiteness and conditioning, sample size and noise in the data affect 3CH just as much as DBCP.113

Using Assumptions–1 and –2, DBCP derives the following expressions, under optimality of the gain matrix:
R̂ ≡ 1

2
[cov (o − a, o − b) + cov (o − b, o − a) ] opt

= R , (12a)
B̂ ≡ 1

2
[cov (a − b, o − b) + cov (o − b, a − b) ] opt

= B , (12b)
Â ≡ 1

2
[cov (a − b, o − a) + cov (o − a, a − b) ] opt

= A , (12c)
where A ≡ (I − K)B is the analysis error covariance.114

2.3 | Full relationship between 3CH and DBCP115

With the index rotation mentioned in the introduction, the 3CH uncertainties associated with all three data sets
{X,Y,Z} can be written as

X̂ =
1

2
{cov (x − y) + cov (x − z) − cov (y − z) }

+ [E (ϵx ⊙ ϵy ) + E (ϵx ⊙ ϵz ) − E (ϵy ⊙ ϵz ) ] , (13a)
Ŷ =

1

2
{cov (y − z) + cov (y − x) − cov (z − x) }

+ [E (ϵy ⊙ ϵz ) + E (ϵy ⊙ ϵx ) − E (ϵz ⊙ ϵx ) ] , (13b)
Ẑ =

1

2
{cov (z − x) + cov (z − y) − cov (x − y) }

+ [E (ϵz ⊙ ϵx ) + E (ϵz ⊙ ϵy ) − E (ϵx ⊙ ϵy ) ] . (13c)
With the corners {X,Y,Z} of 3CH defined to be the observations, background, and analysis, {O, B,A}, this subsec-
tion explores the full relationship between the methods. As in section 2.1, associating the variables x, y and z with o,
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b and a, respectively, each of the expressions in (13) become,
X̂ ≡ 1

2
[cov (o − b) + cov (o − a) − cov (b − a) ] + ∆X , (14a)

Ŷ ≡ 1

2
[cov (b − a) + cov (b − o) − cov (a − o) ] + ∆Y , (14b)

Ẑ ≡ 1

2
[cov (a − o) + cov (a − b) − cov (o − b) ] + ∆Z , (14c)

with the explicit form of the cross–covariance terms written as
∆X = E

(
ϵo ⊙ ϵb

)
+ E

(
ϵa ⊙ (ϵo − ϵb )

)
, (15a)

∆Y = E
(
ϵo ⊙ ϵb

)
− E

(
ϵa ⊙ (ϵo − ϵb )

)
, (15b)

∆Z = E
(
ϵa ⊙ (ϵo + ϵb )

)
− E

(
ϵo ⊙ ϵb

)
, (15c)

after a convenient rearrangement of terms. Let us now find out what 3CH obtains when the assumptions of DBCP116

are applied.117

The assumption of uncorrelated observation and background errors, immediately leads to a simplification of the
cross–covariance terms in (15) to

∆X = E
(
ϵa ⊙ (ϵo − ϵb )

)
, (16a)

∆Y = E
(
ϵa ⊙ (ϵb − ϵo )

)
, (16b)

∆Z = E
(
ϵa ⊙ (ϵo + ϵb )

)
, (16c)

from where it follows that ∆Y = −∆X. Furthermore, orthogonality between the analysis error and the innovation
vector results in

∆X = 0 , (17a)
∆Y = 0 , (17b)
∆Z = 2E

(
ϵa ⊙ ϵb

)
, (17c)

with the last expression following from recognizing that this orthogonality also implies that E (ϵa ⊙ ϵo ) = E (ϵa ⊙ ϵb ) .118

Substituting (8) and using the expression for the Kalman gain (9) the rhs of (17c) becomes119

∆Z = 2E
(
ϵa ⊙ ϵb

)
= (I − K)B + B(I − K)T

= 2A , (18)
which now fully determines what the cross–covariance error terms in 3CH amount to under the assumptions of DBCP.120

Here we see that, this somewhat unnatural choice of corners for 3CH turns out to luckily fit its assumption that errors121

be uncorrelated, at least when it comes to its first two corners; the same, however, cannot be said of the cross terms122

of the third corner.123
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To completely evaluate the 3CH expressions it is helpful to notice that a little matrix algebra shows that
cov (o − b) = cov (ϵo − ϵb ) = B + R , (19a)
cov (o − a) = cov (ϵo − ϵa ) = R − A , (19b)
cov (a − b) = cov (ϵa − ϵb ) = B − A . (19c)

Combining these with (17) and (18) into (14), it follows that
X̂ = R , (20a)
Ŷ = B , (20b)
Ẑ = −A + 2A , (20c)

where the last expression is left explicitly unfolded to emphasize the fact that the 2A term comes from the cross–124

covariance terms in the third corner of 3CH, viz. (17c). This term is what actually is neglected when 3CH assumes the125

errors in its data sets to be uncorrelated; which is not the case when the corners are made of the {O, B,A} data sets.126

Here we see that the cancellation of the cross–terms in the first two corners [viz, (17a) and (17b)] allows for 3CH to127

obtain the same results as DBCP for the observation and background error covariances.128

An alternative, and perhaps simpler, way to see the subtlety in the relationship between the two methods when129

it comes to the third corner of 3CH and the estimation of the analysis error covariance is to notice that, the blind130

assumption of uncorrelated errors made in 3CH implies that131

cov (o − a) 3CH
= R + A , (21)

which is clearly not the case, when the analysis (third corner) error is correlated with the observation (first corner)132

error, viz. (19b), as in typical data assimilation algorithms. It is worth to point out that (21) has been recognized in133

works deriving residual diagnostics when employing observations not assimilated in the underlying DA system (see134

Marseille et al. 2016; Ménard and Deshaies-Jacques 2018). Furthermore, relation (19b) has been known since at least135

the times of Hollingsworth and Lönnberg (1989). The present work simply brings these together in another context.136

2.4 | General remarks137

Having establish the relationship between a particular application of 3CH with DBCP, and having found 3CH to re-138

produce DBCP, after a well understood adjustment of its third corner result, should render unnecessary any further139

comparative comments: when the same data is made available to both methods, and all is consistent, there is nothing140

else to say.141

Still, perhaps for clarity, it might be worthwhile to briefly look into how the known limitations affecting each of142

these methods compare when viewed from the light of the present work. Sjoberg et al. (2021) lists the following143

factors limiting the accuracy of 3CH estimates: (i) sample size; (ii) outliers in the relevant data sets; (iii) relative magni-144

tude of cross–covariance (random) errors among data sets; (iv) biases; and (v) unknown cross–covariances. Put in the145

context of 3CH’s relationship with DBCP this is what can be stated:146

i Sample size is always a factor when estimating errors from a finite sample; 3CH and DBCP are alike in this respect.147
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ii Outliers can certainly affect both procedures, but are typically not a factor in DBCP given its residual vectors148

derive directly from DA algorithms. Such residuals have usually been cleared by multiple levels of quality control,149

reducing the effect of outliers. In the context when 3CH derives its observation, background and analysis from150

the residuals used in DBCP, the former is only mildly affected by outliers, just as the latter. Use of alternative 3CH151

data sets should require as much care to the data as the analysis algorithm gives to its residuals.152

iii The relative magnitude of the errors in the data sets used for 3CH and DBCP should not be so much an issue in153

the particular context here. Errors in the observations, background and analysis tend not to be largely different154

from each other, in some sense, the assimilation homogenizes the errors; this is more of an issue when 3CH is155

used in its broader context of using alternative data sets.156

iv Though unaccounted biases can be an issue in general for both methods, data assimilation residuals benefit from157

various levels of bias correction: (i) applied to the observations either offline (e.g., Haimberger 2007) or online as158

in variational procedures (e.g, Dee 2005, and references therein); and (ii) applied to the background (underlying159

model) as in weak–constraint variational applications (e.g., Bonavita 2021, and references therein). DBCP benefits160

from these automatically and, as long as 3CH construct its data sets from the same residuals used in DBCP, the161

effect should be similar in 3CH.162

v Unknown cross–covariances in the context of the present work would be a manifestation of lack of optimality in163

the underlying DA. This in turn could be a consequence of numerous issues, e.g., non-whiteness of residuals, non–164

linearities, unaccounted errors in the forward model. The relationship between 3CH and DBCP here has been165

established under the assumption of linearity; this is basic to DBCP. When linearity breaks down, the relationship166

established here also breaks down.167

Additionally, DBCP calculations are typically based on residual statistics obtained from deterministic, high reso-168

lution, DA systems. In such cases, only a single realization of residuals is available and the ergodic assumption must169

be relied upon as time averages are used for what should be expectation. As investigated in Desroziers et al. (2009),170

ensemble-based systems have the potential to ameliorate this situation by using averages with respect to the ensem-171

ble of residuals – though depending on the number of ensemble members, time averaged might still be needed to172

gather a robust sample size. To the extent that the 3CH version in the present work construct its three data sets from173

the residuals used in DBCP, the concerns in regards to realizations applies to 3CH just as well. Even in 3CH general174

form, with arbitrary two corners, single–realization estimates must be taken with caution.175

Furthermore, a point of interest when it comes to 3CH is that it makes no assumptions about the nature of the176

underlying statistics. Interestingly, DBCP’s dependence on Gaussianity is quite loose. Derivations of DBCP state that177

the underlying observation and model errors are Gaussian as a general statement when posing the arguments made in178

traditional DA techniques. However, as seen in section 2.2 and in the appendix, there are no explicit assumptions on179

the underlying statistics of errors for the derivation of DBCP. In practice, non–linearity (a version of non–Gaussianity)180

is handled with multiple outer loops and other ways that are not accounted for in the statements of DBCP. The effect181

of non–Gaussianity might be something to explore in how it affects DBCP and in how it compares with 3CH.182

Most applications of DBCP are intended to tune the prescribed error statistics. In working to improve the pre-183

scription of observation error statistics, DBCP has been used to derive not only variance information but also error184

correlations (off–diagonal). This has become central to recent developments that expand the capabilities of DA and185

allow for representation of, for example, existing inter–channel correlations present in satellite radiance observations186

(e.g., Stewart et al. 2014, Weston et al. 2014, Bormann et al. 2016, Campbell et al. 2017, Geer 2019). As highlighted187

in Semane et al. (2022), the caveats of using DBCP estimates to refine only observation uncertainties while ignoring188

estimates of background uncertainties are discussed in the works of Ménard (2016), Waller et al. (2016), and Bath-189
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mann (2018). The consequences of tuning only a subset of the error covariances in DA has also been investigated in190

Bowler (2017) in the context of Todling (2015b) and Todling (2015a) extension of DBCP’s approach to estimate model191

error covariance in weak constraint DA.192

It might be desirable to corroborate error observation estimates from either DBCP or 3CH in alternative ways by,193

for example, making use of independent observations (e.g., Ménard and Deshaies-Jacques (2018), Mirza et al. (2021).194

The generality of two of the corners of 3CH offers yet another possibility for a methodology to obtain alternative195

estimates. This is the gist of the work of Anthes et al. (2022). The question of how to make use of such alternative196

estimates to aid the prescription of uncertainties assigned to observations used in DA algorithms is left for future197

investigation.198

As a final remark we point out that the concept of truth implicit in the calculations in section 2.3 and the appendix,199

is the academic one employed in estimation theory textbooks (e.g., Jazwinski 1970; Maybeck 1979). No attempt has200

been made to account for representativeness errors along the lines of, for example, Janjić and Cohn (2006) and its201

consequences to the expression for the innovation covariance — see eq. (26) in Janjić et al. (2018). A non–textbook202

concept of truth would help account for errors in how data are sampled, collocated in space and time, and adjusted203

for footprint representation (e.g., Table 1 in Semane et al. 2022). A similar statement can be made about representing204

errors in the observation operator along the lines ofWaller et al. (2014). It should be possible to combine all these with205

the suboptimality arguments in the appendix to bring forth more general statements. None of these is likely to result206

in differences between DBCP and 3CH as long the corners of the latter are made consistent with the information207

used by the former.208

3 | PRACTICAL COMPARISON BETWEEN 3CH AND DBCP209

The previous section has established the relationship betweenDBCP and 3CHwhen the latter uses a particular choice210

of corners, and shows the methods to be identical to within a well understood sign difference in one of the estimates.211

With that, it would seem unnecessary to show numerical illustrations from practical applications for after all, any212

noticeable differences would seem to indicate either errors in the supporting software, or inconsistency in how data213

are sampled to produce corresponding results. Nonetheless, in light of the results in Semane et al. (2022) showing214

small differences between the twomethods (see their Figs. 2 and 3), at least a figure corresponding to a revision of their215

results seems appropriate. This section provides a revision of the results in that work, corroborating the equivalence216

of numerical results when both methods use the same data sets.217

Semane et al. (2022) produce numerical comparisons of 3CH and DBCP for (standard deviation) uncertainties218

of COSMIC-2 RO bending angle assimilated in ERA5. The ERA5 reanalysis is produced from ECMWF’s Integrated219

Forecasting System cycle 41r2 (the cycle used for operational forecasting in 2016) with a forecast model grid spacing220

of 31 km and 137 vertical levels. The ERA5 assimilation implements a 12–hour window 4D-Var with cycles from 0900-221

2100 UTC and 2100-0900 UTC (in the following day), where the background and the observations falling within a222

time window are used to specify the 4D analyses within the window (see Hersbach et al. 2020).223

The COSMIC-2 observations used for the comparison are the provisional level-2 bending angles provided by224

the University Corporation for Atmospheric Research (UCAR) COSMIC Data Analysis and Archive Center (CDAAC)225

available since October 1, 2019. The bending angle observations are provided on 247 vertical levels (von Engeln226

et al. 2009), matching the levels used by the European Organization for the Exploitation of Meteorological Satellites227

(EUMETSAT) RadioOccultationMeteorology Satellite Application Facility (ROMSAF) processing of theGNSSReceiver228

for Atmospheric Sounding (GRAS) receiver onboard the Meteorological Operational (Metop) Satellites. All COSMIC-2229
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F IGURE 1 Estimated bending angle standard deviations (uncertainties) from the DBCP (solid–shade) and 3CH
(dashed) methods for April 2021. The standard deviations of the COSMIC-2, ERA5 background, and ERA5 analysis
bending angles are shown by the black, red and green profiles, respectively. The prescribed uncertainty percentage
is shown in blue. These estimates are for all COSMIC-2 latitudes (50◦S-50◦N).

profiles available from 50◦S to 50◦N are used in the comparison and all data were normalized at each level by the230

sample mean of the ERA5 background data and averaged over 1 km layers. Only data passing both a “first guess231

check” on the observed minus bending angles calculated from the short-range forecast and variational quality control232

during the 4D-Var (Anderson and Järvinen 1999; Ruston and Healy 2020) are used to gather relevant statistics. Figure233

1 shows the vertical profiles of the DBCP–estimated uncertainties of the COSMIC-2 (black solid), ERA5 background234

(red solid), ERA5 analysis (green solid), with the corresponding 3CH estimates (dashed curves), and the prescribed235

observation uncertainty (blue curve). The latter is a global “model”, which only includes variation in the vertical as236

function of impact height. We see that, from the surface to 10 km, the prescribed uncertainty decreases linearly with237

impact height to 1.25%; above 10 km, 1.25% is used until this reaches the 3 microradian lower limit. The various238

uncertainty estimates show a maximum in the lower troposphere around 4 km impact height (∼2 km mean sea level239

height), which is associated with temperature and moisture variability at the top of the atmospheric boundary layer.240

A small relative maximum appears around 18 km impact height. This level is in the vicinity of the tropopause where241

temperature is highly variable.242

Three-cornered hat estimates can be derived by extracting the observations, background and analysis from the243

residuals used to produce DBCP estimates, and associate those with the corners of 3CH. The 3CH (dashed curves)244

estimates in Fig. 1 lay right over those of DBCP; the 3CH analysis curve is produced after taking the square root of245

the negative of the third corner variance estimate. Results here show that, when both DBCP and 3CH rely on identical246

data sets to produce their estimates, results between the methods corroborate the mathematical derivation in Section247

2. The small differences found in Semane et al. (2022), when comparing observation and background errors, are now248

understood to be due to sampling differences in the implementation of the two methods back then; an estimate of249

analysis error from 3CH had not been produced back then since the negative result was not understood at the time.250

The results in Fig. 1 only compare the (square–root of the) diagonal of the error covariances of DBCP and 3CH,251

but the relationship between the methods holds for the whole covariances. As an additional illustration, not studied252

in Semane et al. (2022), Fig. 2a shows DBCP’s observation uncertainty in vertical correlations of bending angle. The253
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F IGURE 2 Left: Vertical correlations in COSMIC-2 bending angle observations assimilated in ERA5, in April
2021, estimated using DBCP method. Right: difference of estimated correlations between 3CH and DBCP (notice
10−4 scale in color bar).

matrix is seen to be nearly diagonal with a minor correlation increase in adjacent levels when going from 2 km up254

to 47 km; between 20 and 38 km there a slight anti–correlation among levels slightly further apart. Between 12 to255

about 18 km there is also some small (∼ 0.1) correlation within a few nearby levels. All correlations are weak and256

seem to corroborate the present diagonal observation error covariance prescription used when assimilating bending257

angle in ERA5, and elsewhere. The corresponding 3CH estimate produces nearly identical results, so much so that258

only the difference between the two estimates is shown in Fig. 2b. A rather tight shading interval of 10−4 reveals a259

minor difference along the diagonal toward the top of the grid. These differences are seen to be due to how errors260

accumulate in the coding of the two methods. It is relevant to point out that Nielsen et al. (2022) have recently used261

3CH to calculate similar RO correlations but for refractivities. Since refractivity is a weighted sum of bending angles,262

there is more correlations in refractivity space than seen here in bending angle space.263

Just as independent corroboration, and to fulfill curiosity, the 3CH method has been (optionally) added to the264

suite of programs that systematically produce DBCP results for residuals generated by the NASA GEOS 4D Hybrid265

Ensemeble-Variational system (Todling et al. 1998). In this implementation the data needed by both methods is iden-266

tically sampled. Any differences found between the two methods in either standard deviation or correlations of any267

type are at round-off levels: only due to how statistics are accumulated in calculating the terms of DBCP versus those268

of 3CH. Showing any of such results is deemed unnecessary.269

4 | CLOSING REMARKS270

The present work shows that, when the three–cornered hat (3CH) method of Gray and Allan (1974) uses the obser-271

vation, background and analysis for its three corners, it recovers identical uncertainty estimates for observations and272

backgrounds as obtained with the method of (Desroziers et al., 2005, DBCP) under similar assumptions. The third cor-273

ner estimate recovers instead the negative of the analysis error covariance. These surprising results occur because in274

the 3CH method, the neglected error cross-covariance between observations and analysis and between background275

and analysis, which are both positive, cancel in the 3CH equations for the estimates of observations and background276
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uncertainties, but add in the equation for the estimates of the analysis uncertainty. In this latter case, their neglect by277

3CH amounts to its result becoming the negative of the DBCP uncertainty estimate for the analysis error covariance.278

The relationship established here means that the role of 3CH when it comes to evaluating errors of interest to279

data assimilation procedures is not of replacing DBCP, but rather to allow for alternative means of producing such280

estimates. The freedom in choosing two of the corners of 3CHmakes it attractive in attempts to find alternative ways281

to corroborate the estimates from DBCP.282
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A | CONSEQUENCES OF SUBOPTIMALITY291

Under the general setting of suboptimality, the statements in section 2.2 must be presented differently. The assump-292

tions of unbiased and uncorrelated observation and background errors are still taken to hold. The linear expression293

relating these errors can, however, be written more generally as in294

ϵa = ϵb + K̃(ϵo − ϵb ) , (A.1)
where K̃ is now a general weighting matrix defined as295

K̃ ≡ B̃Γ̃−1
, (A.2)

for B̃ and Γ̃ being symmetric positive–definite matrices, but otherwise unspecified. Typically, Γ̃ = B̃ + R̃, where B̃ and296

R̃ are prescribed weighting matrices representing uncertainties in the background and observations, respectively, but297

not necessarily corresponding to the true error covariances. Optimality means that K̃ = K, which is a statement that298

can be broken up in two:299

OPT-1: That the innovation covariance consistency (i cc) statement (Ménard 2016) should hold, that is,300

Γ̃
i cc
= Γ ≡ E [ (ϵo − ϵb ) (ϵo − ϵb )T ] . (A.3)

where Γ = B + R is the innovation error covariance.301

OPT-2: And that the observation–space projected background error covariance (opb) should equal the corresponding302



14 Todling et al.

projection of the true background error covariance, that is,303

B̃ opb
= B . (A.4)

The split of optimality in these two subcategories allows for thinking of systems that are well tuned (i cc) even when304

not fully optimal, i.e., even when opb is not satisfied.305

With the above, a piecemeal derivation of (12) reveals:
R̂ =

1

2

[
(I − K̃)Γ + Γ (I − K̃)T

]
i cc
= R̃ , (A.5a)

B̂ =
1

2

[
K̃Γ + ΓK̃T

]
i cc
= B̃ , (A.5b)

Â =
1

2

[
K̃Γ (I − K̃)T + (I − K̃)ΓK̃T

]
i cc
=

1

2

[
B̃(I − B̃Γ̃−1)T + (I − B̃Γ̃−1)B̃

]
i cc
= Ã , (A.5c)

where Ã ≡ (I − K̃)B̃ is the perceived analysis error covariance, i.e., the error the DA “thinks” it is making. By replacing306

Γ with Γ̃, we see that the results above only need under the i cc statement; full optimality — opb — is not required.307

To examine 3CH in the same light of suboptimality, it is helpful to make use of the following relations:
E (ϵa ⊙ ϵo ) = 1

2
(K̃R + RK̃T ) , (A.6a)

E
(
ϵa ⊙ ϵb

)
= B − 1

2
(K̃B + BK̃T ) , (A.6b)

and
cov (o − b) = cov (ϵo − ϵb ) = Γ , (A.7a)
cov (o − a) = cov (ϵo − ϵa ) = (I − K̃)Γ (I − K̃)T , (A.7b)
cov (a − b) = cov (ϵa − ϵb ) = K̃ΓK̃T . (A.7c)

Expressions (A.6) and (A.7) are general in that they involve no statements associated with optimality.308
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Combining (A.6) and (A.7) with (14) and (17), 3CH recovers,

X̂ =

{
1

2

[
2Γ − K̃Γ − ΓK̃T

]}
+
{
1

2

[
K̃Γ + ΓK̃T

]
− B

}
i cc
=

{
R̃
}
+
{
B̃ − B

}
opb
= R , (A.8a)

Ŷ =

{
1

2

[
K̃Γ + ΓK̃T

]}
+
{
B − 1

2

[
K̃Γ + ΓK̃T

]}
i cc
=

{
B̃
}
+
{
B − B̃

}
opb
= B , (A.8b)

Ẑ =

{
1

2

[
(I − K̃)Γ (I − K̃)T + K̃ΓK̃T − Γ

]}
+
{
1

2

[
(K̃R + RK̃T ) − (K̃B + BK̃T )

]
+ B

}
i cc
=

{
−Ã

}
+
{
Ã + K̃∆B + A − K∆B

}
opb
= A , (A.8c)

where the curly brackets separate the contribution of the cross–covariance terms from the terms that can be calcu-309

lated in practice. Notice we introduce ∆B ≡ (B̃−B) , and arrange the cross term for the last corner expression in a way310

that highlights what cancels out when opb holds, that is, when ∆B opb
= 0. Focusing on the second equality of each of311

the expressions above, we see what i cc leads to when 3CH drops the cross–covariance terms (second curly bracket):312

the first two corners obtain the prescribed observation and background error covariances, and the third corner obtains313

the negative of the perceived analysis error covariance. This is similar to what happens in the optimal case, though the314

derived covariances have different meaning.315

It is amusing to notice that allowing for the terms in the curly brackets in the first equality of (A.8c) to add up, the316

expression for Ẑ can be put in the form317

Ẑ = K̃ΓK̃T − K̃B − BK̃T + B

= (I − K̃)B(I − K̃)T + K̃RK̃T , (A.9)
which is recognized as the Joseph formula encountered in linear filtering and smoother studies on performance eval-318

uation due to misspecification of the Kalman gain. This expression for Ẑ states that under suboptimal specification of319

the gain matrix, the third corner of 3CH captures the so–called actual analysis error — see Maybeck (1979, Sec. 6.8)320

for a discussion on performance analysis. This is considerably different from anything derived from DBCP — not that321

this is their objective. Unfortunately, this is not a result with practical consequences since the cross–covariance terms322

of 3CH are inaccessible.323

The relationship between the methods hold regardless of optimality. In general, just like DBCP, it is the prescribed324

and perceived error covariances that are recovered; under optimality these become the corresponding true error co-325

variances.326
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